Coarse-grained reverse engineering of genetic regulatory networks.

نویسندگان

  • M Wahde
  • J Hertz
چکیده

We have modeled genetic regulatory networks in the framework of continuous-time recurrent neural networks. A method for determining the parameters of such networks, given expression level time series data, is introduced and evaluated using artificial data. The method is also applied to a set of actual expression data from the development of rat central nervous system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Coarse-Grained, Discrete Systems for Data-Driven Inference of Regulatory Gene Networks: Perspectives and Limitations for Reverse Engineering

This contribution gives an initial report of a new project exploring the perspectives and limits of reversely engineering regulatory gene networks from gene expression data. The availability of such data is currently increasing dramatically due to the microarray technology. However, inferring the underlying network from expression data is difficult. We address the reverse engineering problem by...

متن کامل

Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.

We present computer-assisted methods for analyzing stochastic models of gene regulatory networks. The main idea that underlies this equation-free analysis is the design and execution of appropriately initialized short bursts of stochastic simulations; the results of these are processed to estimate coarse-grained quantities of interest, such as mesoscopic transport coefficients. In particular, u...

متن کامل

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

Bio-mimetic Evolutionary Reverse Engineering of Genetic Regulatory Networks

The effective reverse engineering of biochemical networks is one of the great challenges of systems biology. The contribution of this paper is two-fold: 1) We introduce a new method for reverse engineering genetic regulatory networks from gene expression data; 2) We demonstrate how nonlinear gene networks can be inferred from steady-state data alone. The reverse engineering method is based on a...

متن کامل

Coarse-graining and self-dissimilarity of complex networks.

Can complex engineered and biological networks be coarse-grained into smaller and more understandable versions in which each node represents an entire pattern in the original network? To address this, we define coarse-graining units as connectivity patterns which can serve as the nodes of a coarse-grained network and present algorithms to detect them. We use this approach to systematically reve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bio Systems

دوره 55 1-3  شماره 

صفحات  -

تاریخ انتشار 2000